Refined Perturbation Bounds for Eigenvalues of Hermitian and Non-Hermitian Matrices

نویسندگان

  • Ilse C. F. Ipsen
  • Boaz Nadler
چکیده

We present eigenvalue bounds for perturbations of Hermitian matrices, and express the change in eigenvalues in terms of a projection of the perturbation onto a particular eigenspace, rather than in terms of the full perturbation. The perturbations we consider are Hermitian of rank one, and Hermitian or non-Hermitian with norm smaller than the spectral gap of a specific eigenvalue. Applications include principal component analysis under a spiked covariance model, and pseudo arclength continuation methods for the solution of nonlinear systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three Absolute Perturbation Bounds for Matrix Eigenvalues Imply Relative Bounds

We show that three well-known perturbation bounds for matrix eigenvalues imply relative bounds: the Bauer-Fike and Hooman-Wielandt theorems for diagonalisable matrices, and Weyl's theorem for Hermitian matrices. As a consequence, relative perturbation bounds are not necessarily stronger than absolute bounds; and the conditioning of an eigenvalue in the relative sense is the same as in the absol...

متن کامل

Perturbation of Partitioned Hermitian Definite Generalized Eigenvalue Problems

This paper is concerned with the Hermitian definite generalized eigenvalue problem A− λB for block diagonal matrices A 1⁄4 diagðA11; A22Þ and B 1⁄4 diagðB11; B22Þ. Both A and B are Hermitian, and B is positive definite. Bounds on how its eigenvalues vary when A and B are perturbed by Hermitian matrices are established. These bounds are generally of linear order with respect to the perturbations...

متن کامل

Departure from Normality and Eigenvalue Perturbation Bounds

Perturbation bounds for eigenvalues of diagonalizable matrices are derived that do not depend on any quantities associated with the perturbed matrix; in particular the perturbed matrix can be defective. Furthermore, Gerschgorin-like inclusion regions in the Frobenius are derived, as well as bounds on the departure from normality. 1. Introduction. The results in this paper are based on two eigen...

متن کامل

Weyl-type relative perturbation bounds for eigensystems of Hermitian matrices

We present a Weyl-type relative bound for eigenvalues of Hermitian perturbations A + E of (not necessarily definite) Hermitian matrices A. This bound, given in function of the quantity η = ‖A−1/2EA−1/2‖2, that was already known in the definite case, is shown to be valid as well in the indefinite case. We also extend to the indefinite case relative eigenvector bounds which depend on the same qua...

متن کامل

The bounds of the eigenvalues for rank-one modification of Hermitian matrix

The eigenproblems of the rank-one updates of the matrices have lots of applications in scientific computation and engineering such as the symmetric tridiagonal eigenproblems by the divide-andconquer method and Web search engine. Many researchers have well studied the algorithms for computing eigenvalues of Hermitian matrices updated by a rank-one matrix [1–6]. Recently, Ding and Zhou studied a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2009